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Identifying the structure in cuttlefish visual signals
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The common cuttlefish (Sepia officinalis) communicates and camouflages itself by changing its skin colour
and texture. Hanlon and Messenger (1988 Phil. Trans. R. Soc. Lond. B 320, 437–487) classified these
visual displays, recognizing 13 distinct body patterns. Although this conclusion is based on extensive
observations, a quantitative method for analysing complex patterning has obvious advantages. We formally
define a body pattern in terms of the probabilities that various skin features are expressed, and use Bayesian
statistical methods to estimate the number of distinct body patterns and their visual characteristics. For
the dataset of cuttlefish coloration patterns recorded in our laboratory, this statistical method identifies
12–14 different patterns, a number consistent with the 13 found by Hanlon and Messenger. If used for
signalling these would give a channel capacity of 3.4 bits per pattern. Bayesian generative models might
be useful for objectively describing the structure in other complex biological signalling systems.
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1. INTRODUCTION

In common with their cephalopod relatives squid and
octopus, cuttlefish display a wide range of visual patterns,
which are used for crypsis, interspecific and intraspecific
communication (Hanlon & Messenger 1996). These pat-
terns can be defined as signals, insofar as they affect the
behaviour of other animals (Maynard Smith & Harper
1995), but note that this is a different use of the term
‘signals’ from that employed by Hanlon & Messenger
(1996), where the term is restricted to patterns used for
social communication. The expression of these signals is
probably not random, but structured in some way, and
can be assumed to reflect the underlying signalling state
of the animal. One proposal is that the structure is hier-
archical (Packard & Hochberg 1977), with the visual sig-
nals falling into a set of major categories called ‘body
patterns’. Although the term ‘body pattern’ is not math-
ematically defined in the literature, a reasonable definition
might be that two signals within a body pattern are more
similar to one another than are any two signals from differ-
ent patterns.

To produce signals cephalopods vary the expression of
four types of ‘component’ (Hanlon & Messenger 1988):
(i) chromatic (i.e. skin coloration); (ii) skin texture (e.g.
rough or smooth); (iii) postural; and (iv) locomotor. For
the common cuttlefish, Sepia officinalis, Hanlon & Messen-
ger (1988, 1996) identify 34 chromatic, six textural, eight
postural and six locomotor components, each of which
they assign a unique number (figure 1). Thus, light and
dark ‘zebra’ stripes are components 9 and 26, respectively.
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Shallow water cephalopods, such as S. officinalis, are
thought to communicate primarily with chromatic and
postural signals (Hanlon & Messenger 1996). ‘Colour’
itself (hue and saturation as recognized by humans) is rela-
tively unimportant as most cephalopods, including
S. officinalis, are believed to be colour-blind (Messenger
1979; Marshall & Messenger 1996).

Cephalopods are remarkable for the speed and flexi-
bility with which they generate visual signals. For the Car-
ibbean reef squid (Sepioteuthis sepioidea), the richness of
the signalling repertoire has led to the suggestion that it
has a ‘language’ with up to 35 distinct signalling states (i.e.
words; Moynihan & Rodaniche (1982); but cf. Hanlon &
Messenger (1996, pp. 129–130)). More generally, body
patterns have been qualitatively described for several spec-
ies (e.g. S. officinalis—Holmes (1940); Hanlon & Messen-
ger (1988); Sepioteuthis sepioidea—Moynihan & Rodaniche
(1977, 1982); Metasepia pfefferi—Roper & Hochberg
(1988); Euprymna scolopes and Idiosepius pygmaeus—Moy-
nihan (1983a,b); review—Hanlon & Messenger (1996)),
but so far a quantitative method for identifying even basic
characteristics of these signalling systems is lacking. To
begin a systematic study relating signals to behavioural
context we give a formal definition of a body pattern, and
go on to suggest how these patterns can be classified.

Just as there are field guides for animal identification, a
guide to signalling states of a given species would be use-
ful. The method we use for S. officinalis generates taxo-
nomies of signals based on putative underlying signalling
states (figure 2). The method will suit any communication
system characterized by: (i) individual, low-level constitu-
ent components of the signals that can be clearly defined;
and (ii) these low-level components that can be described
as several discrete modes (e.g. body patterns). By applying
a method previously used for classification of the spectral
classes of stars and genetic sequences (Goebel et al. 1989;
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postural components

(41)  raised arms
(42)  waving arms
(43)  splayed arms
(44)  drooping arms
(45)  extended 4th arm
(46)  raised head
(47)  flattened body
(48)  flanged fin

locomotor components

(49) sitting
(50) bottom suction
(51) buried
(52) hovering
(53) jetting
(54) inking

textural components

(35)  smooth skin
(36)  coarse skin
(37)  papillate skin
(38)  wrinkled first arms
(39)  white square papillae
(40)  major lateral papillae

chronic patterns

1.  uniform light
2.  stipple
3.  light mottle
4.  dark mottle
5.  disruptive
6.  weak zebra

acute patterns

  7.  uniform blanching
  8.  uniform darkening
  9.  acute disruptive
10.  flamboyant
11.  deimatic
12.  intense zebra
13.  passing cloud

body patterns and their components in Sepia officinalis

chromatic components

body patterns

light

  (1)  white posterior triangle
  (2)  white square
  (3)  white mantle bar
  (4)  white lateral stripe
  (5)  white fin spots
  (6)  white fin line
  (7)  white neck spots
  (8)  iridescent ventral mantle
  (9)  white zebra bands
(10)  white landmark spots
(11)  white splotches
(12)  white major lateral papillae
(13)  white head bar
(14)  white arm triangle
(15)  pink iridophore arm stripes
(16)  white arms spots (males only)

dark

(17)  anterior transverse mantle line
(18)  posterior transverse mantle line
(19)  anterior mantle bar
(20)  posterior mantle bar
(21)  paired mantle spots
(22)  median mantle stripe
(23)  mantle margin stripe
(24)  mantle margin scalloping
(25)  dark fin line
(26)  black zebra bands
(27)  mottle
(28)  latero-ventral patches
(29)  anterior head bar
(30)  posterior head bar
(31)  pupil
(32)  eye ring
(33)  dark arm stripes
(34)  dark arms
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Figure 1. Behavioural components and body patterns of juvenile cuttlefish (Sepia officinalis). From Hanlon & Messenger
(1988), reproduced with permission.
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Figure 2. Summary of the experimental strategy. At any one
time a cuttlefish displays several pattern components. From
the expression of these components, a clustering algorithm
infers the number and properties of underlying generators or
body patterns. Each pattern is defined by the probabilities of
expression of each of the components. Arrows are not shown
when there is zero probability of a component being
expressed by a given generator. The expression pattern
shown here is diagrammatic and is not based on real
cuttlefish behaviour.

Cheeseman & Stutz 1996), we propose that it is possible
to automatically identify the number and kind of signals
available to a receiver.

Why is automating signal classification necessary? An
experienced field worker can reliably identify distinct body
patterns, but for the new researcher, and to compare
results between different laboratories, an automated
classification system using a statistical method has advan-
tages. In any case, human observers are notorious for
identifying strong regularities in random variation (e.g.
finding constellations in the stars), and for missing regu-
larities in data that have many dimensions of variation.
Also, when the number of components is large, it is
important to separate genuine structure in signals from
apparent regularities caused by a limited number of
samples generated by a stochastic process.

Our approach is to propose a very large set of models
(hypotheses) for how the observed signals were generated
(a generative model approach; Roweis & Ghahramani
(1999)), and then to use probability theory to calculate
the relative (posterior) probability that these signals were
generated by a given model. Each hypothesis consists of:
(i) the number of distinct body patterns; (ii) the prob-
ability of displaying each of these patterns; and (iii) the
probability of expressing each of the different components
when displaying any given body pattern (54 for cuttlefish,
S. officinalis; Hanlon & Messenger (1996)). Bayesian stat-
istical methods (see later) give the probability that a given
hypothetical generator had generated the observed data.
This allows us explicitly to: (i) test the hypothesis that
there are distinct ‘body patterns’, against a hypothesis that
the observations are a small sample of patterns from a dat-
aset with random variation; and (ii) to test hypotheses
about the number of patterns.

2. METHODS

(a) Recording
Four juvenile (or sub-adult) S. officinalis (mean mantle length

73 mm) were maintained in laboratory aquaria at the University
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of Sussex between June and September 2000. Animals were
filmed in isolation, except for recording social interactions. We
took care to ensure that body patterns were not attributable to
unintentional disturbance. Animals were recorded in a range of
behavioural contexts as follows:

(i) No stimulus (318 examples). At the start of each recording
session, the focal animal was recorded in the absence of
additional stimuli. This provided background data relating
to body patterns in untested, experimentally naive individ-
uals.

(ii) Feeding (116 examples). S. officinalis were filmed hunting
and eating shore crab (Carcinus maenas) and glass prawn
(Palaemonetes pugio) that were present in the aquarium
before the subject was introduced.

(iii) Freely moving prey (184 examples). Prey as above, but
separated from the focal cuttlefish by plastic mesh and
therefore inaccessible to it.

(iv) Prey presented in transparent tubes (135 examples). The
focal S. officinalis was given the same prey as above held
captive within sealed and weighted transparent plastic
tubes.

(v) Social (35 examples). Focal S. officinalis were filmed in the
presence of either one or two conspecifics.

(vi) Squid/fish model or S. officinalis image (20 examples).
Models of fish (fishing lures), squid and juvenile conspe-
cifics were presented to the focal S. officinalis. Models were
held outside the aquarium on a piece of rigid wire. Care
was taken to ensure that the model alone was visible. Since
cuttlefish quickly habituate to models, only data relating
to the first two presentations of each model were analysed.

Aquaria were illuminated with diffuse overhead lighting and
surrounded by cloth to minimize disturbance, and were main-
tained at 17 ± 2 °C, 12 L : 12 D diurnal cycle. One aquarium
(800 mm × 800 mm, water depth 150 mm) was designed for
filming with a horizontally placed camera (Canon XL-1, digital
video), having a large mirror positioned above it at an angle of
45°. Focal individuals were allowed to acclimatize to the filming
aquarium for a minimum of 2 h before recording. A total of 808
individual frames from the digital video were captured with
Canon Data Commander software, and constituent components
of patterns classified according to Hanlon & Messenger’s (1988)
scheme (figure 1).

(b) Computation
(i) Data format

Each cuttlefish image was represented by a vector of compo-
nent expressions, consisting of ones and zeros, according to
whether or not each of the 54 body-pattern components recog-
nized by Hanlon & Messenger (1988) was present (figure 1).

(ii) Modelling the structure of cuttlefish patterns
Is it best to describe the cuttlefish signals as coming from a

continuum or from discrete signalling states (with possible vari-
ation within each state)? We use Bayesian statistical methods
to turn this ‘cluster analysis’ problem into one of probabilistic
inference. The objective is to estimate the relative probabilities
that the observed patterns were created by differing numbers of
unknown hypothetical pattern ‘generators’ (figures 2 and 3). In
statistics, the analysis of data by finding the model most likely
to have generated the data is known as generative modelling
(Roweis & Ghahramani 1999).
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Figure 3. The relative probability of the number of distinct
body patterns being from 1 to 20. Only the probabilities
between 9 and 16 are shown, as all others are infinitesimally
small.

For the dataset of cuttlefish images, an appropriate definition
of a single generator is as a set of probabilities of each of the
components being expressed when the generator is present
(figure 2). Further, we assume that only one generator is ever
active at one time, and the components are conditionally inde-
pendent. For example, consider a system with only two compo-
nents; say a left and right eyespot. A single generator with
probabilities of 0.1 and 0.9 would mean that the left eyespot
had a 10% chance of being expressed compared with a 90%
chance of the right eyespot, when this generator was present.

The simplest model is therefore one where a single generator
generates all patterns. If so, the only structure to the patterns
would be that some components were more probable than
others (though a given dataset could appear to have more struc-
ture simply from the effects of sampling). More complex models
can be constructed by combining multiple generators in the fol-
lowing manner: (i) a generator is selected at random from a pool
of possible generators, each associated with a different prob-
ability of being selected; (ii) the chosen generator expresses the
54 components with their associated probabilities. This type of
statistical model is known as a mixture of Bernoullis (Ripley
1996).

In the framework of Hanlon & Messenger (1988) a single type
of body pattern comprises a specific set of components being
displayed. Our notion of body pattern is more flexible in that
for a given pattern components are neither present or absent,
but are expressed with a specific probability (0: never to 1:
always present in the pattern displayed). Identifying different
body patterns by finding the most probable model of data gener-
ation has the important advantage that it carries out cluster
analysis on a well-founded probabilistic basis.

We then need to estimate three sets of parameters: (i) the
number of generators (i.e. body patterns); (ii) the probability
that each generator occurs; and (iii) the probability of each
component being expressed in a given generator (figure 2). The
objective is to find a set of parameters that maximizes the prob-
ability of generating the observed data.

Simply maximizing the probability of generating the data
(maximum likelihood) would produce the trivial result that the
number of generators is equal to the number of distinct patterns
in the image database. Therefore, we need to place a principled
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cost on model complexity. As complicated models are intrinsi-
cally less probable than simple ones any additional complexity
in a model (additional generators, in our case) must be justified
by an improved fit to observations. We evaluated models that
postulated from one to 19 body patterns, as initial shorter runs
showed that all high probability solutions lay within this range.

Modelling was done with the AutoClass system (Stutz &
Cheeseman 1995), which is widely available (http://ic.arc.
nasa.gov/ic/projects/bayes-group/autoclass/), and Bayesian meth-
ods were then used to estimate the number of different gener-
ators (Bishop 1995). AutoClass uses a combination of multiple
restarts, an expectation-maximization algorithm, and a split and
merge process to maximize the probabilities for a given mode
(there are similar alternatives such as minimum message length
based SNOB; Wallace & Dowe (2000)). AutoClass was run
with default parameters, except that there were 1000 optimiz-
ation steps per model (to improve the quality of the solutions at
the expense of computer time). The high dimensionality (54) of
the dataset of cuttlefish images means that to ensure a good fit
many models must be evaluated. With the conservative para-
meters used, the main simulation took 19 days (450 h) on an
Alpha EV6 500 MHz RISC workstation.

3. RESULTS

We photographed body patterns of four S. officinalis
individuals in laboratory aquaria under a variety of con-
trolled behavioural situations. Images were classified
according to the presence or absence of the 54 known
possible body pattern components (chromatic, textural,
postural and locomotor; Packard & Hochberg (1977),
Hanlon & Messenger (1988)). A database of 808 images
was classified, and from this we investigated the statistical
structure of body patterns. Specifically, the number of dis-
tinct body patterns within the dataset, and the structure
of each pattern in terms of the component probabilities of
each of the 54 components being expressed.

A ‘body pattern’ is defined as a cluster in the 54-dimen-
sional space given by the expression of the basic behav-
ioural components. A total of 194 688 runs of the
AutoClass algorithm evaluated and optimized different
models, testing the probability of the number of body pat-
terns being 1–19. The most probable number of body pat-
terns (i.e. clusters) was 12, with 13 or 14 being within the
same range (figure 3). Other possible numbers of body
patterns were much less likely. This result can be com-
pared with 13 basic types of pattern identified by Han-
lon & Messenger (1988), but no direct correspondence
can be made. For example we recorded only captive juv-
eniles; however, adults and juveniles in their natural habi-
tat may show (possibly many) more types of pattern. For
example, only 41 of the 54 components were expressed in
our image database (table 1). We think it unlikely that
increasing the number of images would have yielded
further clusters within the range of patterns observed in
our laboratory, but that recording from more naturalistic
conditions would.

Individual images could be assigned to a cluster (body
pattern) with confidence. The average probability of an
image belonging to the most likely cluster (of 12)
exceeded 97%, and 95% of images could be assigned to
one of the 12 clusters with greater than 84% confidence.

Table 1 shows graphically the probabilities associated
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Table 1. The 12 most probable clusters in order of decreasing probability of occurrence.
(Each column represents a given cluster, and each row one of the 54 different components in the scheme of Hanlon & Messenger
(1988). Only components present in at least one of our images are shown. A five-level coding scheme is employed: probabilities
of occurrence between 0 and 0.2 are shown as ‘--’; between 0.2 and 0.4 as ‘-’; between 0.4 and 0.6 as ‘.’; between 0.6 and 0.8
as ‘�’ and between 0.8 and 1.0 as ‘��’.)

1 2 3 4 5 6 7 8 9 10 11 12

1 -- -- �� -- -- -- -- -- -- -- - --
2 -- -- �� -- -- -- . -- -- � - --
3 -- -- -- -- -- -- -- -- -- -- -- --
5 � �� �� � �� � �� - �� -- �� --
7 -- -- . -- -- -- -- -- -- -- . --
9 -- �� -- -- �� -- �� -- �� �� �� --
10 -- � -- - -- -- . -- - �� �� --
11 -- -- -- -- -- -- -- -- -- -- -- .
12 �� �� �� �� -- �� -- -- . - �� --
13 -- - �� . -- -- . -- �� -- �� --
14 -- -- -- -- -- -- -- -- -- -- -- --
16 -- -- -- -- -- -- -- -- -- -- -- --
17 -- -- �� . -- -- -- -- -- -- �� --
18 -- -- �� . -- -- -- -- -- -- . --
19 -- -- -- -- -- -- -- -- -- -- -- --
20 -- -- -- -- -- -- -- -- -- -- -- --
21 . . - - - � . . -- . -- .
22 - -- �� . -- -- - -- � -- �� .
23 - -- -- -- -- -- -- -- -- -- -- --
24 -- -- -- -- -- -- -- -- -- -- -- --
25 -- -- -- -- -- -- - -- -- -- -- -
26 -- �� -- -- �� -- �� -- �� �� � --
29 - � . - . -- �� -- �� �� �� �
30 �� �� - - �� � �� - - �� � ��
32 � � -- -- � � �� -- -- � -- ��
33 -- - -- -- - - -- -- -- -- . .
34 . . -- -- -- - �� -- -- . -- .
35 �� �� �� �� �� �� �� �� �� �� �� ��
36 -- -- -- -- -- -- -- -- -- -- -- --
37 �� �� �� �� -- �� -- -- . . �� --
39 -- -- -- - -- -- -- -- -- -- - --
40 . . � �� -- � -- -- - -- �� --
41 -- -- . - -- -- -- -- - -- - --
42 -- -- -- -- -- -- -- -- -- -- -- --
43 -- -- -- -- -- -- -- -- -- - -- --
44 -- -- -- -- -- -- -- -- -- -- -- --
47 �� �� �� �� �� �� �� �� �� �� �� ��
49 -- -- . . -- -- -- - -- -- - --
52 �� �� . - �� -- �� . - �� � ��
53 -- -- -- -- -- �� -- -- . -- -- --
54 -- -- -- -- -- -- -- -- -- �� -- ��

with the various body patterns for the most probable sol-
ution found (with 12 distinct body patterns). Figure 4
illustrates representative examples of each cluster. Table
2 describes the images together with differences from
them and the prototypical body pattern (i.e. the pattern
with the highest probability of being expressed for each
body pattern).

A detailed investigation of the relationship between the
body pattern and the context is beyond the scope of this
article (and the subject of a document in preparation), but
one result is relevant. This is the strong relationship
between the body pattern displayed, and the context the
animal was recorded in. Given previously unseen body
patterns, the correct context could be predicted ca. 60%
of the time, and this was approximately constant across
all contexts (Baddeley et al. 2003).
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4. DISCUSSION

Hanlon & Messenger (1988) provide a detailed list of
the chromatic and other components used by juvenile
S. officinalis and, following Packard & Hochberg (1977),
suggest how their expression is coordinated to produce
several body patterns (figure 1). We have given an objec-
tive and quantitative method for specifying the number
of distinct body patterns (signalling states) used by the
cuttlefish S. officinalis. Finding such structure in data is
notoriously difficult for human observers, who often
detect structure when there is none, or, especially in high-
dimensional data, overlook strong regularities in the less
perceptually salient features. The AutoClass method has
a successful history in identifying distinct clusters in the
infrared spectra of stars (Goebel et al. 1989), and in the
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Figure 4. Images typical of the 12 clusters of body patterns produced by Sepia officinalis juveniles in our image database. They
are ordered by decreasing probability of expression (figure 5). Each image was chosen as a compromise between closeness of
the most obvious visual features to the cluster centre and image quality. Tables 1 and 2 give further information on the
patterns.

Table 2. Description of the 12 identified body patterns, together with any differences between the prototypical pattern, and the
representative image shown in figure 4.

cluster number description comments

1 uniform light or light mottle component 40 missing
2 zebra stripes � mottle additional component 13
3 blanched with white square and triangle additional component 41
4 blanched and papillate additional components 17 and 18
5 zebra stripes additional components 12 and 37
6 deimatic additional component 34; component 21 is presented

unilaterally
7 light mottle additional component 37, missing component 9
8 uniform additional component 52
9 intense zebra —
10 zebra stripes � white square additional component 42, missing component 54
11 zebra stripes � headbar additional components 1 and 2, missing component 33
12 eye ring missing component 33 additional components 1 and 2

discovery of classes of proteins, introns and other patterns
in DNA/protein-sequence data (Cheeseman & Stutz
1996). Although we are unable to make a precise compari-
son between the 12 body patterns that we identify (figure
4) and those of Hanlon and Messenger (figure 1), some
of their similarities and differences can be seen in the
descriptions given in table 2.

To tackle the problem of identifying the number of dis-
tinct signalling states of a cuttlefish, we endeavoured to
estimate the number of their visual signal generators. We
give explicit probabilities for the number of states being a
given number. The most probable interpretation was that
there were 12 states, but solutions based on 13 and 14
clusters also had high probability. Although the result is
compatible with the 13 body patterns described by Han-
lon & Messenger (1988), we can rule out the much larger
number of body patterns claimed for other cephalopods
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(Hanlon & Messenger 1996). This is not to say that these
animals do not have these much larger signalling reper-
toires, but given no objective means of associating prob-
abilities with different interpretations, it is impossible to
compare estimates of the number of different signalling
states derived from different laboratories. The AutoClass
system is freely available, and simple to use. It would be
interesting to measure the number of signalling states in
other species objectively and, in particular, find out if
there is any systematic relationship between this number
and the average group size. We are currently working on
the classification of several other Sepia species (e.g.
S. lycidas and S. pharaonis).

The 12 different body patterns were displayed with dif-
ferent probabilities in our dataset (figure 5). This is rel-
evant for two reasons: (i) the distribution of frequencies
can have distinctive patterns in many communication
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Figure 5. The probabilities of the 12 different clusters
(connected black dots). Shown for comparison are the
probabilities predicted if these data obeyed Zipf’s (1935) law
(dashed line), or an exponential decay (� = 0.2). As can be
seen, apart from the first cluster, the data are much better
described as a simple exponential decay rather than the
Zipf’s law, which characterizes human communication
systems.

systems; and (ii) this probability distribution places an
upper bound on the channel capacity of cuttlefish visual
signals. For natural languages this distribution has a power
law form (known as Zipf’s (1935) law). Dolphin com-
munication may also follow Zipf’s law (McCowan et al.
1999), but the expression of cuttlefish body patterns in
our dataset does not follow Zipf’s law. Instead, an
exponential distribution of frequencies provides a much
better fit—which is not typical of human communication
systems. The distribution does, however, give an estimate
of the entropy of the cuttlefish signals, when viewed as a
communication channel. This places an upper bound on
the information (based on zero noise) transmission
capacity of the signals of 3.4 bits per visual signal, far less
than that theoretically possible with such a potentially rich
medium of communication.

The most similar work to this study on animal com-
munication is by McCowan (1995) who used a clustering
algorithm (k-means) to categorize the whistles of
bottlenose dolphins (Tursiops truncatus). There are several
problems with this method. These include the non-
reproducibility of the results of the k-means algorithm
(which depends critically on initial conditions). More
importantly, as acknowledged by McCowan, no rigorous
method was used to determine the number of categories.
The methods that we use can be thought of as a substan-
tially improved version of k-means clustering. We search
for the best solution, rather than one dictated by initial
conditions, and utilize a principled method to estimate the
number of body patterns displayed by S. officinalis.

The present study simplifies the analysis by using binary
component expressions. This was done because to meas-
ure accurately the surface reflectance of the skin for all the
cuttlefish images would require accurate calibration of the
digital camera, and would require a very labour-intensive
process of measuring the reflectivity for each of the (34)
chromatic components. For the remaining non-chromatic
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components (textural, postural and locomotor), it is again
unclear how one would objectively assign real valued
numbers to their ‘degree of expression’, and statistical
models that combine both discrete and continuous
measurements are much more difficult to deal with.
Despite this, we are currently developing a computerized
system that will semi-automatically allow the measuring
of chromatic component reflectances. The analogue level
of expression almost certainly contains information, and
utilizing this should provide greater insight into the use of
body patterns in cuttlefish communication, and the appli-
cation of modern clustering methods such as mixtures of
factor analysers (Ghahramani & Hinton 1996).

A further limitation of this study is that animals were
only filmed in captivity, and observed in a limited number
of distinct behavioural contexts. This raises the issue that
this analysis was conducted on multiple different situ-
ations, and although many of the body patterns were used
for social communication, many more were probably
camouflage behaviour. This was done because the
methods, and the calculation of channel capacity, require
a large amount of data. Despite this, combining across
contexts, and the bias in sampling from the different situ-
ations, means that the exact information content of the
signals and the deviation from Zipf’s law should be treated
with some caution.

Although the visual nature of the cuttlefish signals sim-
plifies some of the analyses, there is no reason why similar
statistical methods cannot be applied to other areas of
communication. Clustering, using mixtures of Gaussians
rather than the Bernoullis, is the standard recognition
model used for artificial speech recognition models. Given
that auditory signals are appropriately pre-processed to
remove the ambiguity of pitch (a cepstrum representation
of the signal is the standard method in artificial speech
recognition; Noll (1967)), then the number of distinct
vocal signals could be estimated for animals whose com-
munication is sound based. The method requires only (i)
that there are large numbers of examples of the signals;
(ii) a method for quantifying the different signals; and (iii)
a set of statistical models corresponding to the different
signalling hypotheses: mixtures of Gaussians or factor ana-
lysers would be appropriate. Given this, any communi-
cation system could potentially be investigated.

5. CONCLUSIONS

Our aim was to analyse the body patterns of the com-
mon cuttlefish, S. officinalis, by associating probabilistic
models with different proposals as to the statistical struc-
ture of the signals used. We used statistical model com-
parison methods to compare these models. We propose a
particular quantitative model based on mixtures as a way
of estimating the number of distinct body patterns dis-
played by this species. The computer software we used is
widely available, and has been used successfully in such
diverse areas as astronomy and DNA-sequence analysis.
The method does not produce an absolute answer to the
number of clusters, but a probability for each possible
interpretation. The number of distinct body patterns
identified was similar to that found by Hanlon & Messen-
ger (1988) in cuttlefish, using simple observation.

Importantly, the methodology used here allows
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quantitative investigation of such claims that, for example,
the social squid, Sepioteuthis sepioidea, can express as many
as 35 different displays (Moynihan & Rodaniche 1982; see
also Hanlon & Messenger 1996). Without a statistical
method, and when the classifications are performed by eye
(a task that is remarkably difficult), such claims can be
difficult to interpret. An automatic system helps system-
atic studies of animal signalling repertoires, and in relating
them to their social and physical environment.

Finally, two aspects of these data are relevant to the
claim that cuttlefish signals constitute a language
(Moynihan & Rodaniche 1982). First, the distribution of
signals is not distributed in the same way as that found in
human and claimed for dolphin signals (McCowan et al.
1999); it does not obey the characteristic Zipf’s law.
Although this is not a definitive characteristic of a langu-
age, it is a characteristic of most human languages. One
possible reason why cuttlefish signals do not resemble
natural languages is that many patterns are used primarily
for camouflage.

More importantly, with 54 different components, it is
potentially possible that each signal could communicate
up to 54 bits of information, more than enough for very
sophisticated communication. By contrast, rather than
54 bits, because of redundancy, we found an estimate of
3.4 bits per signal. Although English only has a channel
capacity of ca. 1.5 bits per letter, the letters can be added
to provide an effectively infinite channel capacity for com-
munication. By contrast, the cuttlefish, even with the
capability of combining multiple different components to
increase channel capacity, only signals just over 3 bits.
Although small, for a relatively non-social species, this
capacity may be all that S. officinalis requires.
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